
ANSI Escape Sequences
Standard escape codes are prefixed with Escape:

• Ctrl-Key: ˆ[
• Octal: \033
• Unicode: \u001b
• Hexadecimal: \x1B
• Decimal: 27

Followed by the command, somtimes delimited by opening square bracket ([),
known as a Control Sequence Introducer (CSI), optionally followed by arguments
and the command itself.

Arguments are delimeted by semi colon (;).

For example:

\x1b[1;31m # Set style to bold, red foreground.

Sequences
• ESC - sequence starting with ESC (\x1B)
• CSI - Control Sequence Introducer: sequence starting with ESC [ or CSI

(\x9B)
• DCS - Device Control String: sequence starting with ESC P or DCS (\x90)
• OSC - Operating System Command: sequence starting with ESC ] or OSC

(\x9D)

Any whitespaces between sequences and arguments should be ignored. They are
present for improved readability.

General ASCII Codes

Name decimal octal hex
C-
escape

Ctrl-
Key Description

BEL 7 007 0x07 \a ˆG Terminal bell
BS 8 010 0x08 \b ˆH Backspace
HT 9 011 0x09 \t ˆI Horizontal TAB
LF 10 012 0x0A \n ˆJ Linefeed (newline)
VT 11 013 0x0B \v ˆK Vertical TAB
FF 12 014 0x0C \f ˆL Formfeed (also: New page

NP)
CR 13 015 0x0D \r ˆM Carriage return
ESC 27 033 0x1B \e* ˆ[ Escape character
DEL 127 177 0x7F <none> <none> Delete character

1



Note: Some control escape sequences, like \e for ESC, are not
guaranteed to work in all languages and compilers. It is recommended
to use the decimal, octal or hex representation as escape code.

Note: The Ctrl-Key representation is simply associating the non-
printable characters from ASCII code 1 with the printable (letter)
characters from ASCII code 65 (“A”). ASCII code 1 would be ˆA
(Ctrl-A), while ASCII code 7 (BEL) would be ˆG (Ctrl-G). This is a
common representation (and input method) and historically comes
from one of the VT series of terminals.

Cursor Controls
Hide cursor for 5 seconds

echo -e "\e[?25l" ; sleep 5 ; echo -e "\e[?25h"

ESC Code Sequence Description
ESC[H moves cursor to home position (0, 0)
ESC[{line};{column}H
ESC[{line};{column}f

moves cursor to line #, column #

ESC[#A moves cursor up # lines
ESC[#B moves cursor down # lines
ESC[#C moves cursor right # columns
ESC[#D moves cursor left # columns
ESC[#E moves cursor to beginning of next line,

# lines down
ESC[#F moves cursor to beginning of previous

line, # lines up
ESC[#G moves cursor to column #
ESC[6n request cursor position (reports as

ESC[#;#R)
ESC M moves cursor one line up, scrolling if

needed
ESC 7 save cursor position (DEC)
ESC 8 restores the cursor to the last saved

position (DEC)
ESC[s save cursor position (SCO)
ESC[u restores the cursor to the last saved

position (SCO)

Note: Some sequences, like saving and restoring cursors, are private
sequences and are not standardized. While some terminal emulators
(i.e. xterm and derived) support both SCO and DEC sequences, they
are likely to have different functionality. It is therefore recommended
to use DEC sequences.

2



Erase Functions

ESC Code Sequence Description
ESC[J erase in display (same as ESC[0J)
ESC[0J erase from cursor until end of screen
ESC[1J erase from cursor to beginning of screen
ESC[2J erase entire screen
ESC[3J erase saved lines
ESC[K erase in line (same as ESC[0K)
ESC[0K erase from cursor to end of line
ESC[1K erase start of line to the cursor
ESC[2K erase the entire line

Note: Erasing the line won’t move the cursor, meaning that the
cursor will stay at the last position it was at before the line was
erased. You can use \r after erasing the line, to return the cursor to
the start of the current line.

Colors / Graphics Mode

ESC Code
Sequence

Reset
Sequence Description

ESC[1;34;{...}m Set graphics modes for cell, separated by
semicolon (;).

ESC[0m reset all modes (styles and colors)
ESC[1m ESC[22m set bold mode.
ESC[2m ESC[22m set dim/faint mode.
ESC[3m ESC[23m set italic mode.
ESC[4m ESC[24m set underline mode.
ESC[5m ESC[25m set blinking mode
ESC[7m ESC[27m set inverse/reverse mode
ESC[8m ESC[28m set hidden/invisible mode
ESC[9m ESC[29m set strikethrough mode.

Note: Some terminals may not support some of the graphic mode
sequences listed above.

Note: Both dim and bold modes are reset with the ESC[22m sequence.
The ESC[21m sequence is a non-specified sequence for double underline
mode and only work in some terminals and is reset with ESC[24m.

Color codes

Most terminals support 8 and 16 colors, as well as 256 (8-bit) colors. These
colors are set by the user, but have commonly defined meanings.

3



8-16 Colors

Color Name Foreground Color Code Background Color Code
Black 30 40
Red 31 41
Green 32 42
Yellow 33 43
Blue 34 44
Magenta 35 45
Cyan 36 46
White 37 47
Default 39 49
Reset 0 0

Note: the Reset color is the reset code that resets all colors and
text effects, Use Default color to reset colors only.

Most terminals, apart from the basic set of 8 colors, also support the “bright” or
“bold” colors. These have their own set of codes, mirroring the normal colors,
but with an additional ;1 in their codes:

# Set style to bold, red foreground.
\x1b[1;31mHello
# Set style to dimmed white foreground with red background.
\x1b[2;37;41mWorld

Terminals that support the aixterm specification provides bright versions of the
ISO colors, without the need to use the bold modifier:

Color Name Foreground Color Code Background Color Code
Bright Black 90 100
Bright Red 91 101
Bright Green 92 102
Bright Yellow 93 103
Bright Blue 94 104
Bright Magenta 95 105
Bright Cyan 96 106
Bright White 97 107

256 Colors The following escape codes tells the terminal to use the given
color ID:

ESC Code Sequence Description
ESC[38;5;{ID}m Set foreground color.

4

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds1/aixterm.htm


ESC Code Sequence Description
ESC[48;5;{ID}m Set background color.

Where {ID} should be replaced with the color index from 0 to 255 of the following
color table:

Figure 1: 256 Color table

The table starts with the original 16 colors (0-15).

The proceeding 216 colors (16-231) or formed by a 3bpc RGB value offset by 16,
packed into a single value.

The final 24 colors (232-255) are grayscale starting from a shade slighly lighter
than black, ranging up to shade slightly darker than white.

Some emulators interpret these steps as linear increments (256 / 24) on all
three channels, although some emulators may explicitly define these values.

RGB Colors More modern terminals supports Truecolor (24-bit RGB), which
allows you to set foreground and background colors using RGB.

These escape sequences are usually not well documented.

ESC Code Sequence Description
ESC[38;2;{r};{g};{b}m Set foreground color as RGB.
ESC[48;2;{r};{g};{b}m Set background color as RGB.

Note that ;38 and ;48 corresponds to the 16 color sequence and is
interpreted by the terminal to set the foreground and background
color respectively. Where as ;2 and ;5 sets the color format.

Screen Modes
Set Mode

5

https://en.wikipedia.org/wiki/Color_depth#True_color_.2824-bit.29


ESC
Code
Se-
quence Description
ESC[={value}hChanges the screen width or type to the mode specified by value.
ESC[=0h 40 x 25 monochrome (text)
ESC[=1h 40 x 25 color (text)
ESC[=2h 80 x 25 monochrome (text)
ESC[=3h 80 x 25 color (text)
ESC[=4h 320 x 200 4-color (graphics)
ESC[=5h 320 x 200 monochrome (graphics)
ESC[=6h 640 x 200 monochrome (graphics)
ESC[=7h Enables line wrapping
ESC[=13h320 x 200 color (graphics)
ESC[=14h640 x 200 color (16-color graphics)
ESC[=15h640 x 350 monochrome (2-color graphics)
ESC[=16h640 x 350 color (16-color graphics)
ESC[=17h640 x 480 monochrome (2-color graphics)
ESC[=18h640 x 480 color (16-color graphics)
ESC[=19h320 x 200 color (256-color graphics)
ESC[={value}lResets the mode by using the same values that Set Mode uses, except

for 7, which disables line wrapping. The last character in this escape
sequence is a lowercase L.

Common Private Modes

These are some examples of private modes, which are not defined by the specifi-
cation, but are implemented in most terminals.

ESC Code Sequence Description
ESC[?25l make cursor invisible
ESC[?25h make cursor visible
ESC[?47l restore screen
ESC[?47h save screen
ESC[?1049h enables the alternative buffer
ESC[?1049l disables the alternative buffer

Refer to the XTerm Control Sequences for a more in-depth list of private modes
defined by XTerm.

Note: While these modes may be supported by the most terminals,
some may not work in multiplexers like tmux.

6

https://invisible-island.net/xterm/ctlseqs/ctlseqs.html


Keyboard Strings

ESC[{code};{string};{...}p

Redefines a keyboard key to a specified string.

The parameters for this escape sequence are defined as follows:

• code is one or more of the values listed in the following table. These
values represent keyboard keys and key combinations. When using these
values in a command, you must type the semicolons shown in this table
in addition to the semicolons required by the escape sequence. The codes
in parentheses are not available on some keyboards. ANSI.SYS will not
interpret the codes in parentheses for those keyboards unless you specify
the /X switch in the DEVICE command for ANSI.SYS.

• string is either the ASCII code for a single character or a string contained
in quotation marks. For example, both 65 and “A” can be used to represent
an uppercase A.

IMPORTANT: Some of the values in the following table are not
valid for all computers. Check your computer’s documentation for
values that are different.

List of keyboard strings

Key Code SHIFT+code CTRL+code ALT+code
F1 0;59 0;84 0;94 0;104
F2 0;60 0;85 0;95 0;105
F3 0;61 0;86 0;96 0;106
F4 0;62 0;87 0;97 0;107
F5 0;63 0;88 0;98 0;108
F6 0;64 0;89 0;99 0;109
F7 0;65 0;90 0;100 0;110
F8 0;66 0;91 0;101 0;111
F9 0;67 0;92 0;102 0;112
F10 0;68 0;93 0;103 0;113
F11 0;133 0;135 0;137 0;139
F12 0;134 0;136 0;138 0;140
HOME (num keypad) 0;71 55 0;119 --
UP ARROW (num keypad) 0;72 56 (0;141) --
PAGE UP (num keypad) 0;73 57 0;132 --
LEFT ARROW (num
keypad)

0;75 52 0;115 --

RIGHT ARROW (num
keypad)

0;77 54 0;116 --

END (num keypad) 0;79 49 0;117 --

7



Key Code SHIFT+code CTRL+code ALT+code
DOWN ARROW (num
keypad)

0;80 50 (0;145) --

PAGE DOWN (num
keypad)

0;81 51 0;118 --

INSERT (num keypad) 0;82 48 (0;146) --
DELETE (num keypad) 0;83 46 (0;147) --
HOME (224;71) (224;71) (224;119) (224;151)
UP ARROW (224;72) (224;72) (224;141) (224;152)
PAGE UP (224;73) (224;73) (224;132) (224;153)
LEFT ARROW (224;75) (224;75) (224;115) (224;155)
RIGHT ARROW (224;77) (224;77) (224;116) (224;157)
END (224;79) (224;79) (224;117) (224;159)
DOWN ARROW (224;80) (224;80) (224;145) (224;154)
PAGE DOWN (224;81) (224;81) (224;118) (224;161)
INSERT (224;82) (224;82) (224;146) (224;162)
DELETE (224;83) (224;83) (224;147) (224;163)
PRINT SCREEN -- -- 0;114 --
PAUSE/BREAK -- -- 0;0 --
BACKSPACE 8 8 127 (0)
ENTER 13 -- 10 (0
TAB 9 0;15 (0;148) (0;165)
NULL 0;3 -- -- --
A 97 65 1 0;30
B 98 66 2 0;48
C 99 66 3 0;46
D 100 68 4 0;32
E 101 69 5 0;18
F 102 70 6 0;33
G 103 71 7 0;34
H 104 72 8 0;35
I 105 73 9 0;23
J 106 74 10 0;36
K 107 75 11 0;37
L 108 76 12 0;38
M 109 77 13 0;50
N 110 78 14 0;49
O 111 79 15 0;24
P 112 80 16 0;25
Q 113 81 17 0;16
R 114 82 18 0;19
S 115 83 19 0;31
T 116 84 20 0;20
U 117 85 21 0;22
V 118 86 22 0;47

8



Key Code SHIFT+code CTRL+code ALT+code
W 119 87 23 0;17
X 120 88 24 0;45
Y 121 89 25 0;21
Z 122 90 26 0;44
1 49 33 -- 0;120
2 50 64 0 0;121
3 51 35 -- 0;122
4 52 36 -- 0;123
5 53 37 -- 0;124
6 54 94 30 0;125
7 55 38 -- 0;126
8 56 42 -- 0;126
9 57 40 -- 0;127
0 48 41 -- 0;129
- 45 95 31 0;130
= 61 43 -– 0;131
[ 91 123 27 0;26
] 93 125 29 0;27

92 124 28 0;43
; 59 58 -- 0;39
’ 39 34 -- 0;40
, 44 60 -- 0;51
. 46 62 -- 0;52
/ 47 63 -- 0;53
‘ 96 126 -- (0;41)
ENTER (keypad) 13 -- 10 (0;166)
/ (keypad) 47 47 (0;142) (0;74)
* (keypad) 42 (0;144) (0;78) --
- (keypad) 45 45 (0;149) (0;164)
+ (keypad) 43 43 (0;150) (0;55)
5 (keypad) (0;76) 53 (0;143) --

Resources
• Wikipedia: ANSI escape code
• Build your own Command Line with ANSI escape codes
• ascii-table: ANSI Escape sequences
• bluesock: ansi codes
• bash-hackers: Terminal Codes (ANSI/VT100) introduction
• XTerm Control Sequences
• VT100 – Various terminal manuals
• xterm.js – Supported Terminal Sequences

9

https://en.wikipedia.org/wiki/ANSI_escape_code
http://www.lihaoyi.com/post/BuildyourownCommandLinewithANSIescapecodes.html
http://ascii-table.com/ansi-escape-sequences.php
https://bluesock.org/~willkg/dev/ansi.html
http://wiki.bash-hackers.org/scripting/terminalcodes
https://invisible-island.net/xterm/ctlseqs/ctlseqs.html
https://vt100.net/
https://xtermjs.org/docs/api/vtfeatures/

	ANSI Escape Sequences
	Sequences
	General ASCII Codes
	Cursor Controls
	Erase Functions
	Colors / Graphics Mode
	Color codes

	Screen Modes
	Set Mode
	Common Private Modes
	Keyboard Strings

	Resources


